Jonathan Vincent

Jonathan Vincent

2014 Sept - Inference and analysis of regulatory networks involved in wheat (Triticum aestivum L.) grain storage protein synthesis and their response to nitrogen and sulfur supply

Grain storage protein content and composition are the main determinants of bread wheat (Triticum aestivum L.) end-use value. Scaling laws governing grain protein composition according to grain nitrogen and sulfur content could be the outcome of a finely tuned regulation network. Although it was demonstrated that the main regulation of grain storage proteins accumulation occurs at the transcriptomic level in cereals, knowledge of the underlying molecular mechanisms is elusive. Moreover, the effects of nitrogen and sulfur on these mechanisms are unknown. The issue of skyrocketing data generation in research projects is addressed by developing high-throughput bioinformatics approaches. Extracting knowledge on from such massive amounts of data is therefore an important challenge. The work presented herein aims at elucidating regulatory networks involved in grain storage protein synthesis and their response to nitrogen and sulfur supply using a rule discovery approach. This approach was extended, implemented in the form of a web-oriented platform dedicated to the inference and analysis of regulatory networks from qualitative and quantitative –omics data. This platform allowed us to define different semantics in a comprehensive framework; each semantic having its own biological meaning, thus providing us with global informative networks. Spatiotemporal specificity of transcription factors expression was observed and particular attention was paid to their relationship with grain storage proteins in the inferred networks. The work initiated here opens up a field of innovative investigation to identify new targets for plant breeding and for an improved end-use value and nutritional quality of wheat in the context of inputs limitation. Further analyses should enhance the understanding of the control of grain protein composition and allow providing wheat adapted to specific uses or deficient in protein fractions responsible for gluten allergenicity and intolerance.

Modification date : 27 June 2023 | Publication date : 07 December 2015 | Redactor : Patricia Tixier-Leyre